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A variety of input shaper has been proposed to reduce the residual vibration of #exible
structures. However, the complexity to solve the non-linear simultaneous equations
increases due to addition of the constraints to improve the robustness of an input shaper. In
this paper, by proposing a graphical approach which places the shaper zeros on the z-plane,
the input shaper could conveniently be designed even if the constraints are added for further
robustness. Furthermore, it is shown that the proposed method could be accommodated
with the variations of both natural frequency and damping ratio. With a
mass}damper}spring model, a better performance is obtained using the proposed new
multi-hump input shaper.
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1. INTRODUCTION

It is necessary to reduce the residual vibration of a light and #exible system for
point-to-point operations such as motions of #exible manipulators, ceiling cranes, etc. For
vibration reduction, either a feedback or an open-loop control approach could be
employed. Instead of using a feedback control, it is possible to eliminate residual vibration
with only an open-loop approach. One of the open-loop approaches is the input-shaping
technique that employs the convolution of the input shaper with the reference command for
vibration reduction.

Smith [1] introduced the posicast control as an input shaper. Recently, Singer and
Seering [2, 3] suggested a design method to increase the robustness of Smith's method,
using the multiple impulses. Magnitudes and time intervals are obtained by the
di!erentiation of the residual vibration magnitudes with respect to frequency. Singhose,
Seering and Singer [4}6] proposed a modi"ed input-shaping technique introducing
a multi-hump Extra Insensitive (EI) shaper for robustness improvement. Unfortunately, the
calculations are complicated because simultaneous non-linear equations are involved. For
damped systems, no analytic solution has been found, so that the solution is numerically
presented [7, 8]. Murphy [9] derived an arbitrary rate digital shaping "lter from an
input-shaping technique. Tuttle and Seering [10] proposed a design method in discrete time
domain to cancel out the poles of the systems natural frequencies by the zeros of the input-
shaper. They showed that the robustness is improved by adding shaper zeros to the system
poles. The shaper provides the smallest time interval with the positive impulse magnitudes.
However, their approach should solve the more complicated non-linear simultaneous
equations to improve the robustness of the input shaper with the additional constraints.
The reason why the di$culty increases is that the sensitivity function of the input shaper is
analyzed continuously even if the input shaper is discretely employed.
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In this paper, a method to design the input shaper on the z-plane is proposed by
considering the sensitivity function in the discrete time domain. A design procedure of input
shapers in both continuous and discrete time domains is reviewed in the next section. The
sensitivity equation of the input shaper in the discrete time domain is derived in section 3. In
section 4, a brief review of the multi-hump input shaper is given and a method to design
a multi-hump input shaper in the discrete time domain is presented. It will be shown that
the proposed method has better performance than the existing multi-hump shaper by
accounting for the variations of natural frequency and damping ratio simultaneously. In
section 5, the performances of multi-hump input shapers in discrete time domain are
illustrated.

2. INPUT SHAPER

2.1. CONTINUOUS TIME DOMAIN

At "rst, the input-shaping technique is brie#y reviewed. As an illustration, the
input-shaping technique is convolving impulse train with the reference input to eliminate
residual vibration. In Figure 1, the responses are shown if a mass}damper}spring system is
discretely excited with impulse magnitudes A

0
and A

1
. As shown in Figure 1, the "rst

impulse excites the system and then the residual vibration is cancelled out if the second
impulse with a damped magnitude A

1
is applied appropriately after half the period of time.

In the design of the input shaper, the natural frequency and damping ratio of a system are
important factors.

The input shaper is determined from a set of constraint equations that limit the residual
vibration of the system. The constraints on vibration amplitude can be expressed as the
ratio of residual vibration amplitude with shaping to that without shaping. The ratio [2, 7,
8] is expressed as
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Figure 1. Vibration cancellation using two impulses. **, Response to A0; - - -, Response to A1; and
s, Response to A0 & A1.



Figure 2. Sensitivity curves for the ZV and ZVD input shapers. **, ZV shaper; and - - -, ZVD shaper.
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where n is one less than the number of impulses, A
i
is the amplitude of the ith impulse, t

i
is

the input time of the ith impulse and t
n
is input time of the last impulse. The amplitude and

input time can be obtained by using equation (1). The input shaper which reduces the
residual vibration by using only two impulses is called a zero-vibration (ZV) input shaper
[7, 8]. As shown in Figure 2, the sensitivity curve of the ZV input shaper is shown, with
a residual vibration of zero at the point of natural frequency and non-zero in the other
frequency region. For reducing the fast growing residual vibration magnitude,
a zero-vibration-derivative (ZVD) input shaper [7, 8] is designed by adding the
di!erentiated equations of equation (1). As shown in Figure 2, residual vibration with
respect to frequencies is decreased proportionally with the improved robustness.

2.2. DISCRETE TIME DOMAIN

Secondly, the design approach of the input shaper in the discrete time domain is
explained with a di!erent aspect from Murphy [9]. The discrete transfer function of the
second order system is expressed as
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The design strategy of the input shaper cancels out the poles of the system by the zeros of
the input shaper which is expressed as
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where K is the sum of the coe$cients of z~n (n"0, 1, 2) which normalizes the input shaper.
The poles can be relocated by the impulse time interval ¹. For example, if the impulse

time interval is set to 1/4 of the vibrational period of time, the pole of an undamped system
is located on the image axis as shown in Figure 3. The pole moves to the right when ¹ is less



Figure 3. The poles of the system and the zeros of an input shaper in the z-plane.
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than 1/4 of the vibrational period of time, and to the left otherwise. If the pole is located in
the right half plane, the coe$cient of z~1 in equation (3) always has a negative sign, so that
the system is usually saturated due to the sign change. It is not advisable that the pole be
located at the left half plane, which always has the positive coe$cient for z~1, since the
impulse time interval becomes large. Therefore, the impulse time interval ¹"1/4 is the
optimal time when all the coe$cients are positive and the time interval is the smallest. Since
(p#p*) is equal to zero with the impulse time interval ¹"1/4, equation (3) arrives at
equation (4). If ¹"1/2, the order of input shaper is reduced to one so that equation (4) is
expressed as equation (5) which is exactly the same as that of the ZV shaper:
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For increased robustness, extra zeros are added. As a result, the general equation of
a ZVDn~1 shaper is

H (z)"1
k
(1!pz~1)n. (6)

3. SENSITIVITY CURVE

The sensitivity curve in the discrete time domain is developed by using the input shaper.
The sensitivity curve shows how much the amplitude of the residual vibration changes with
respect to the frequency. In other words, it is expressed as the ratio between the amplitude of
the residual vibration when the input shaper is not used and that of the residual vibration
when the input shaper is used. In the continuous time domain, it is equal to < of equation
(1). However, in the discrete time domain, < is expressed as

<"
DH(z)zn D DG (z) D

DG (z) D
"DH (z) zn D . (7)



Figure 4. Calculation of D(1!pz~1)z D for ZV input shaper in the z-plane (T"n/u
d
).
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For mathematical convenience, zn is multiplied to H (z) for the magnitude comparison of
residual vibration between shaped and unshaped inputs. In Appendix A DH (z)zn D is veri"ed
to be the same as < in the continuous time domain.

In the undamped case, the magnitude of DH(z)zn D is obtained using the graphical method.
It is equal to the distance from the zeros of the input shaper to one point on the unit circle
eju¹ divided by K. As shown in Figure 2, the sensitivity curve becomes symmetric with
respect to the natural frequency of the system.

In the damped case, DH (z)zn D is equal to the distance from the zeros of the input shaper to

a point on the spiral curve e!fu¹#juJ1!f2¹ divided by K in Figure 4. The sensitivity curve is
not symmetric with respect to the natural frequency.

The various types of sensitivity curves could be graphically represented in the discrete
time domain.

4. MULTI-HUMP INPUT SHAPER

First, the multi-hump input shaper in the continuous time domain is reviewed for
comparison. A design procedure of the multi-hump input shaper is, then, proposed on
discrete time domain.

4.1. CONTINUOUS TIME DOMAIN

The multi-hump input shapers have more robustness than the ZVDn~1 input shapers for
a given residual vibration ratio. This method allows a small amount of residual vibration
near the natural frequency of system. As shown in Figure 5, the sensitivity curve indicates
a humped shape. The peak of the hump is an allowable residual vibration ratio.

In the case of one-hump, the input shaper with a residual vibration ratio of 5% is
obtained by solving simultaneous equations with the condition that residual vibration ratio
is equal to zero at u"u

lo
, u

hi
and 0.05 at u"u

n
. u

lo
and u

hi
are the lower and upper

frequencies where the zero residual vibration occurs. For designing a one-hump input
shaper, eight equations are solved for impulse magnitudes A

0
, A

1
and A

2
, impulse times t

0
,



Figure 5. Sensitivity curve of the one-hump input shaper (<"5%, 10%). **, <"5%; and - - -, <"10%.
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t
1

and t
2
, and frequencies u

lo
and u

hi
where the residual vibration becomes 0. For each

hump that is added, two more equations are required. Therefore, it is very cumbersome to
solve such simultaneous equations. In the case of a damped system, it is more di$cult to
"nd an analytic solution. Hence, a numerical solution can be found in reference [8] only for
a residual vibration ratio of 5% insensitivity. If the residual vibration ratio for insensitivity
is changed, the numerical solution for the coe$cient is performed again.

4.2. DISCRETE TIME DOMAIN

A graphical design procedure which places the shaper zeros on the z-plane is described
for a multi-hump shaper by considering the variation of natural frequency for the
undamped and the damped systems. At the end of the section, the proposed method is
extended to the case of the simultaneous variations of natural frequency and damping ratio.

4.2.1. Design for only frequency variation

For the undamped system, the zero associated with system pole is located on the unit
circle for zero residual vibration with regard to the variation of natural frequency as shown in
Figure 6. As in Figure 6(a), if the zeros of input shaper are symmetrically located near the
system pole, the system has small residual vibration at the natural frequency (for example
<"5%) and zero residual vibration at the frequency where the input shaper zero is
located. If the zeros are placed away from the system pole, the allowance value of the
residual vibration increases. Figures 5 and 6(b), respectively, show the sensitivity curve with
one hump and zero location in the z-plane with vibration allowance ratio of 10%
respectively. In the case of two humps, an input shaper has three zeros. One is located at the
system pole and the others are located near the pole as shown in Figure 7. In the case of
three humps, the peaks of the two outer hump and the center humps are changed to the
normalized locations of u

lo1
/u

n
, u

lo2
/u

n
u

hi1
/u

n
, and u

hi2
/u

n
as shown in Figure 8 with

Du"u
n
!u
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and kDu"u

n
!u
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. The peaks of the three humps can be adjusted by

Du/u
n
and k(0(k(1). As Du/u

n
increases, so does the height of the outer two humps. The



Figure 6. Input shaper zeros with one-hump in the z-plane: (a) <"5%; (B) <"10%.

Figure 7. Two-hump input shaper (<"5%): (a) zeros of a two-hump input shaper; (b) sensitivity curve of
a two-hump input shaper.

Figure 8. Sensitivity curve of three-hump input shaper.
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Figure 9. Du/u
n
versus allowable residual vibration for one- and two-hump input shaper.**, one hump; - - -,

two hump; - * - , three hump; #, four hump.

Figure 10. k versus allowable residual vibration for three- and four-hump input shaper.**, three hump; - - -,
four hump.
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peak of the center hump increases with increase in the value of k. Figures 9 and 10 show
Du/u

n
and k for allowable residual vibration of one-, two-, three- and four-hump input

shapers. The zero position of multi-hump input shaper having humps for 5% vibration
ratio is shown in Table 1.

In a damped system, the system pole is located on the spiral curve as shown in Figure 11.
If the zero positions p

lo
and p

hi
are placed on the spiral curve, the coe$cient of

z~n (n"0, 1, 2,2) becomes a complex number which is not realizable. However, as shown
in Figure 11, if the zeros are located on the circle whose radius is e!fu

n
¹, the coe$cient of

z~n becomes the real number. In the case of a one-hump shaper, there is no frequency at
which the residual vibration becomes zero in the sensitivity curve, because no zero is located
on the spiral curve, as shown in Figure 11.

In the case of a two-hump shaper, there is a frequency where the residual vibration
becomes zero, because one of the zeros is located on the spiral curve. The zero positions of
input shapers are shown in Table 1 with a damping ratio of f"0)1. Figure 12 shows the



TABLE 1

Zero position of input shaper having uneven sensitivity (<"5%)

The number Zero positions of multi-hump f"0 f"0)1
of Humps EI shaper
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Figure 11. Input shaper zeros with one hump in the z-plane (<"5%, f"0)1, u
n
"4]2p rad/s).
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sensitivity curve of one- and two-hump input shapers. Figures 13 and 14 show Du
n
/u

n
and

k for allowable residual vibration of one-, two-, three- and four-hump shapers.
As previously illustrated, the input shaper in the discrete time domain is readily obtained

because the proposed technique is treated with the least number of variables compared to
the one in the continuous time domain. For input shaper designs having one- or two-hump
shapers, the z-plane technique uses only Du/u

n
. In the case of three- and four-hump

shapers, the additional variable k is involved. When the number of humps increases by two,
the relevant number of variables increases by one. However, an input shaper having more
than "ve humps is not practical because of a large time delay in actual implementation.

4.2.2. Design for both frequency and damping ratio variations

The existing design procedure [4}6] of a multi-hump shaper does not consider the
variation of damping ratio as shown in Figure 15. However, a multi-hump shaper could be



Figure 12. Sensitivity curves of one- and two-hump input shapers (<"5%, f"0)1, u
n
"4]2p rad/s). **,

one hump; and - - -, two hump.

Figure 13. Du/u
n

versus allowable residual vibration for one-, two-, three- and four-hump input shapers.
(damped system). **, damping ratio: 0)03; - - -, damping ratio: 0)05; and - * -, damping ratio: 0)1.
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extended to the case of the simultaneous variations of both natural frequency and damping
ratio by the proposed graphical method.

For an example, a two-hump shaper with the frequency variation 0}8 Hz is designed
when the natural frequency of the system is 4 Hz. In the case of the constant f in Figure 11,
the behavior of the spiral curve always moves into the inside of the inner circle according to
the frequency increment. However, the spiral curve goes to either the inside or the outside of
the inner circle in the case of the variations of both damping ratio and frequency as shown
in Figure 16. The sensitivity curves of the two-hump shaper on plane f and u/u

n
are shown

in Figure 17. The proposed graphical design method could account for the variation of both
natural frequency and damping ratio. When the damping ratio varies from 0)28 to 0)02, the
proposed method has better performance than Singhose's in Figure 18.



Figure 14. k versus allowable residual vibration ratio for a three-hump input shapers (damped system). **,
damping ratio: 0)03; } } }, damping ratio: 0)05; and - - -, damping ratio: 0)1.

Figure 15. Sensitivity curves of Singhose's two-hump shapers. **, zeta"0; } }}, zeta"0)1; and
- - - , zeta"0)2.
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5. SIMULATION

A mass}damper}spring system is employed as shown in Figure 19 to demonstrate the
e$cacy of the proposed technique.

In the undamped case, the step input is applied to mass 1 where masses m
1

and m
2

are
1 kg and the spring constant k is 632 N/m. Figure 20 shows the impulse sequence of
a two-hump shaper for the system. When a two-hump input shaper is used, the residual
vibration is shown in Figure 21. By assigning a spring constant of k"1168 N/m, which
gives a 36% variation on the natural frequency, the amplitude of the residual vibration is
observed to be within 5%, as expected in Figure 7(b).

In the damped case, Figure 22 shows the impulse sequence of a two-hump shaper. Figure
23 shows the numerical result of taking a spring constant of 1274 N/m, which gives a 42%
variation in the natural frequency, and a damped coe$cient 5)03 N s/m. This gives a 5%
variation, as shown in Figure 12. At the last impulse time, the envelope of the damped
system hits 5%.



Figure 16. Zeros of two-hump shaper: (a) damping ratio (0)28}0)02); (b) damping ratio (0)1}0)05).

Figure 17. Sensitivity curve of two-hump shaper designed to frequency and damping ratio variations. **,
zeta"0)28}0)02; and - - -, zeta"0)15}0)05.

Figure 18. Sensitivity curves of two-hump shapers. **, Proposed shaper; and - - -, Singhose's shaper.
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Figure 19. Two mass, spring and damper model.

Figure 20. Impulse sequence for two-hump shaper for undamped system (¹"0)125).

Figure 21. Time response with two-hump shaper for the undamped system.

Figure 22. Impulse sequence of two-hump shaper for damped system (¹"0)1256).
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Figure 23. Time response with two-hump shaper for damped system.

Figure 24. Time response with two-hump shapers for step input. **, Proposed shaper; and - - -, Singhose's
shaper.
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For an instance, when the natural frequency of a system of 4 Hz is changed to 5)4 Hz and
the damping ratio 0)15 is changed to 0)1, the step input is applied to the
mass}damper}spring system with two-hump shaper. As expected in Figure 18, the
performance of the proposed method is better than that of Singhose's as shown in Figure 24.

6. CONCLUSION

In this paper, it is shown that the sensitivity function in the z-plane is equal to the one in
the continuous time domain. In order to obtain the desired shape of the sensitivity curve,
the graphical design method, which adjusts the zeros of input shapers on the z-plane, is
presented. The graphical method does not solve non-linear simultaneous equations to
design a robust multi-hump shaper. Unlike the existing design method, the proposed
method could accommodate with the simultaneous variation of natural frequency and
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damping ratio. It was shown that the newly designed shaper has better performance than
the existing multi-hump shaper. With a mass}damper}spring model, the performance of the
proposed multi-hump shaper was illustrated.
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APPENDIX A

DH(z)zn D is expressed as equation (A) using s"!fu#juJ1!f2 and z"esT.

DH (z)zn D"DA
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#A
1
e(!fu#juJ1!f2) (n!1)¹

#,2,#A
n
D (A)

where, n¹ is equal to t
n
of equation (1). Therefore, equation (A) is rewritten as

DH(z)zn D"DA
0
e(!fu#juJ1!f2) t

n#A
1
e(!fu#juJ1!f2) t
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On the other hand, equation (1) is rewritten as
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Comparing equations (B) and (C), we can see the equality.
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